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NDL HIT Solar Cell
-Smoothlgg texturing &
U and spin dry .

texturing

texturing

iVoc=750mV

Eff.=16.7% ,
a-Si:H 50 nm ' N

a-Si:H 50 nm
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1I-V solar cell
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v MOCVD
(tunnel diode)

(GalnP)

v LED

0.45 USD/W




P\/2000:PC,,BM
200cm?( 10 100cm?

)

%1 /8 #H 2. BV HEAH T (cm’) BmHF(%) Reference
PCDTBT/PC,.BM kg e-spray 0.52 E4 cellséﬁﬁ&}) 493 igﬁr Eggrggﬁggj corar Cells
#MPET e-spray 0.52 (4 cells#r #%) 472
HiG Doctor blade 3% (7 cells# 5t 5.28 . :
PBTZT-stat-BDTT-8:PCBM _ ‘ =] 206 8,80
#MEPET  Slot die 35 (7 cellszm £1) 4.20 .
PTB7-Th-PC,,BM #15 Slot die 4.15 (3cellsfz )  7.50 o

PV2000:PC;,BM kg Slot die 120 (20cellsm 5%) 5.36 INER
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Electron transport layer

substrate

Acceptor layer

i

Hole transport layer

Glass or PET
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v 35 kW
( 800°C
600°C)
v YSZ
25%
40%
v 00
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» Improvements on system technology

- Diagnoses, 1&C control.

- Reformer/catalysts

- Thermal/water management

- Envelopment of operating regimes

- In-field performance testing

- A prototype of SkWSOFC power system
is under way
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Stack current (A)

I-V-P curves of a 36-cell stack on

the INER-III SOFC system.

n w IS
= =3 o

Stack voltage (V). Stack current (A)
]

0

1200
I - 1080
n )
L redo
 an : v e m =
HE | S H . %
y-eb A z
| B4 60 o
3
L480 9
Stack voltage g
Stack current 360
= = —  Stack power
240
120
T 0
0 200 500 600 700

T Operatign time
Durability test for

the power system.




v 3000 m? gt

v /o Nano-Si
(STOBA) Pore
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O Li,Ti;0,,(LTO)
O LTO ~10Kg

US patent 8545735 (2013) /JP patent 5390547 (2013)
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I NATURE | LETTER o

O Nature .

| ( ) An ultrafast rechargeable aluminium-ion battery

Merig-“hang Lin, Ming Gong, Bingan Lu, Yingpeng Wu, Di-Yan Wang, Mingyun Guan,
Michael Angell, Changxin Chen, Jiang Yang, Bing-Joe Hwang & Hongjie Dai
o Battery discharging
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Hope it will be a big success
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Technology Readiness Levels {TRLs)

TRLs IS a me
assess the m

asure used to
aturity of

evolving technologies
(devices, materials,

components,
Work process

during its develocpment and

IN some case
operations.

software,

es, eic.)

S during early

System Test, Launch
& Operations

Sysiem/Subsystem
Development

Technology
Demonstration

Technology
Development

Research to Prove
Feasibility

Basic Technology | |

Research

TRLS

TRL 8




TRLs (Detailed Discussion)

TRL | Definition Description Supparting Information

1 Basic principles Lowest level of technology readiness. Scientific research begins Pubiished research that identifies the
observed and to be translated into applied research and development. principles that underlie this technology.
reported Examples might include paper studies of a technology’s basic References to who, where, when.

properties. MRL N/A

2 Technology Invention begins. Once basic principles are observed, practical | Pubiications or other references that
concept and/or applications can be invented. Applications are speculative, and outline the application being considered
application there may be no proof or detailed analysis to support the and that provide analysis to support the
formulated assumptions. Examples are limited to analytic studies. MRRL N/A concept.

3 Analytical and Active research and development (R&D) is initiated. This includes | Results of laboratory tests performed to
experimental analytical studies and laboratory studies io pihysically validate measure parameters of interest and
critical function analytical predictions of separate elements of thie technology. comparison to analytical predictions for
and/or Examples include components that are nct yet integrated or critical subsystems. References to who,
characteristic representative. Analyses identify rnanufacturing concepts or where, and when these tests and
proof of concept emerging producibility issues for breadboard system. comparisons were performed.

4 Component Basic technological components are integrated to establish that System concepts that have been
and/or they will work together. This is reiativeily “low fidelity” compared to | considered and results from testing
breadboard the eventual system. Examples include integration of “ad hoc” laboratory-scale breadboards(s).
validations in hardware in the laberatory. Key manufacturing processes References to who did this work and
laboratory identified & assessed in lab. Costas an Independent Variable when. Provide an estimate of how
environment (CAIV) targets established. breadboard hardware and test results

differ from the expected system goals.

5 Component Fidelity of breadboard technology increases significantly. The Results from testing a lab breadboard
and/or basic technological components are integrated with reasonably system are integrated with other
breadboard realistic supporting elements so they can be tested in a simulated supporting elements in a simulated
validation in | environment. Examples include “high-fidelity” laboratory operational environment. How does the
relevant integration of components. Trade studies and lab experiments “relevant environment” differ from the

environment

define key manufacturing processes and sigma levels needed to
meet CAIV targets.

expected operational environment? How
do the test results compare with
expectations? Was the breadboard
system refined to more nearly match
expected system goals?




TRLs (Detailed Discussion

TRL Definition Description Supporting Information

6 System/subsyst Representative model or prototype system, which is well Results from laboratory testing of a prototype system
em model or beyond that of TRL 5, is tested in a relevant environment. that is neai the desired configuration in terms of
prototype Represents a major step up in a technology’s performance, weight, and volume. How did the test
demonstration in | demonstrated readiness. Examples include testing a environment differ from the operational environment?

a relevant prototype in a high-fidelity laboratory environment or in Who performed the tests? How did the test compare
environment simulated operational environment. Critical manufacturing | with expectations? What problems, if any, were
processes prototyped, targets for improved yield encountered? What are/were the plans, options, or
established. actions to resolve problems encountered before moving
to the niext level?

7 System Prototype near, or at, planned operational svstem. Results from testing a prototype system in an
prototype Represents a major step up from TRL 6, requiring operational environment. Who performed the tests?
demonstration in | demonstration of an actual system prototype in an How did the test compare with expectations? What
an operational operational environment such as an aircraft, vehicle, cr problems, if any, were encountered? What are/were the
environment space. Examples include testing the prototype in a test plans, options or actions to resolve problems

bed aircraft. Prototype system built on soft tooling, initial encountered before moving to the next level?
sigma levels established for critical manufacturing
processes.

8 Actual system Technology has been proven to work in its final form and Results of testing the system in its final configuration
completed and under expected conditions. in alrmost all cases, this TRL under the expected range of environmental conditions
qualified through | represents the end of true systerii development. in which it will be expected to operate. Assessment of
test and Examples include deveiopmental test and evaluation of whether it will meet its operational requirements. What
demonstration the system in its intended weapon system to determine if it | problems, if any, were encountered? What are/were the

meets design specifications. Critical manufacturing plans, options, or actions to resolve problems
processes demonsirate acceptable yield for pilot line or encountered before finalizing the design?
LRIP.

9 Actual system Actual application of the technology in its final form and Operational Test and Evaluation (OT&E) reports.

proven through
successful
mission
operations

under missicn conditions, such as those encountered in
operaticnal test and evaluation. Examples include using
the system under operational mission conditions.
Manufacturing processes are operating at six-sigma or
appropriate quality level.
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Observation

Most Programs that “Fail” lack a Disciplined
Systems Engineering Process.
Programs that focus on manufacturing and

production issues early-on have a far greater
“success” rate.

Mature Manufacturing Management
Knowledge Base Exists; but Use is Sporadic
and Not Standardized.

Manufacturing Issues Not Adequately
Addressed at All Milestone Reviews.




TRLs unanswered questions - MRL

Provide a common language and widely-understood standard for:

e Assessing the performance maturity of a technology and
plans for its future maturation

e Understanding the level of performance risk in trying to
transition the technology into a coinmercial system application

TRLs leave major transition questions unanswered:

e |s this level of performance reproducible in items 2- 10007

e What will these cost in production?

e Can these be made in a production environment by someone
without a PhD?

e Are key materials and components available?




Why MRLs? What are MRLSs?

e Current Technology Readiness e Evaluates “manufacturing
Level (TRL) approach does not readiness” of product
require prototype components * Supplements existing TRLs
to be producible, reliable, or e Used to assess maturity of a
affordable technoiogy’s underlying

e Successful products require the manufacturing processes

capture of design and * Enable rapid, affordable

: transition to acquisition
manufacturing knowledge early 9

: rograms
in product development Prog . L
e I|dentifies potential risk areas

 MRLs provide a more complete
evaluation of a system by
addressing producibility earlier
in development



Why MRLs? What are MRLSs?
N

Actual system “flight proven” through
successful mission operations

Actual system completed & “flight
qualified” through test & demonstration

System/subsystem model or prototype
demonstration in a relevant environment

System prototype demonstration in an
operational environment

Component and/or breadboard
validation in relevant environment

Component and/or breadboard
validation in laboratory environment

Analytical & experimental critical
function & /or characteristic proof-of-
concept

Technology concept and/or application
formulated

Basic principles observed and reported

TRL 9

TRL 8

TRL 7

TRL 6
——

TRL 5

Manufacturing processes are operating
at six-sigma or eppropriate quality level
Critical mfa. processes demonstrate
acceptabie yield for pilot line or LRIP
Prototype system built on soft tooling, initial
sigma tevels established for critical processes
Critical manufacturing processes prototyped,
targets for improved yield established

Trade studies & lab experiments define
key mfg. processes & sigma levels
needed to meet CAIV targets

Key manufacturing processes identified &
assessed in lab. CAIV targets established

Analyses identify manufacturing concepts
or emerging producibility issues for
breadboard system



MRL Evaluation Criteri

Cl)

e Technology and Industrial Base
e Design

e Materials

e Cost and Funding

e Process Capability and Control
e Quality Management

e Manufacturing Personnel

e Facilities

e Manufacturing Management



Mapping Tools for MRL

MRL Tools Use to Evaluate...
3 Process Flow Charts Basic manufacturing concepts
4 Detailed Process Flow Key manufacturing processes charts
5 Value Stream Mapping Mapping the current state

and identifying waste

6-10  Value Stream Mappinug Mapping the future state
and eliminating waste



Mapping Tools for MRL

MRL Tools
4-6 Key Characteristics
4 Process Variables Map
5-9 Process Capability
Performance
5-9 Design of Experiments

independent variables

6-9 Failure Modes and
Analysis

Use to Evaluate. ..

Requirements and tolerances

Which variables to control

Predictability of process

Multiple factors and levels of

Risks associated with failure effects



VC Sufficient Returns at Acceptable
Risk

e The majority of that capital went to follow-en funding
for projects originally developed through the far
greater expenditures of governments and corporations.

 Where venture money plays an important role is in the
next stage of the innovation lite cycle—the period in a
company’s life when it begins to commercialize its
innovation..

* Venture money is not iong-term money. In essence, the
venture capitalist buys a stake in an entrepreneur’s
idea, nurtures it for a short period of time, and then
exits with the help of an investment banker.




Gap in manufacturing innovation
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How the venture capital
Industry works

The ventmre capital industry has four main plavers: entrepreneurs who need funding investors
who want high returns; investment bankers who need companies to sell; and the venture capi-
talists who make money for themselves by making a market for the other three.

-

-

Venture
Entrepreneurs capitalists

s

Corporations and
government

Stock

l

Public markets
and corporations

J

More than 80% of the money invested by venture
capitalisis gues into the adolescent phase of a com-
pany's life cycle. In this period of accelerated
growth, the financials of both the eventual win-

TIMING (S EVERYTHING

ners and losers look strikingly similar.

sales

Venture Capitalist

Industry as

a whole

time

Start-up
| Adolescence
= Maturity and shakeout




Profile of the Ideal Entrepreneur

From a venture capitalist’s perspective, the ideal entrepreneur:

1.
2.

3.

a

oo

10.
11.

is qualified in a “hot” area of interest,

delivers sales or technical advances such as FDA approval with reasonable
probability,

tells a compelling story and is presentable to outside investors,
recognizes the need for speed to an IPO for liquidity,

has a good reputation and can provide references that show competence and
skill,

understands the need for a team with a variety of skills and therefore sees why
equity has to be allocated to other people,

works diligently toward a goal but maintains flexibility,
gets along with the investor group,

understands the cost of capital and typical deal structures and is not offended by
them,

is sought after by many VCs,
has realistic expectations about process and outcome.



 Domain knowledge
. TRL
. VC

MIT has currently licensed 49% of its 2728 issued
US patents to third parties 32% of its 1750
pending US patents.



